Multistability and Stabilization of Fractional-Order Competitive Neural Networks With Unbounded Time-Varying Delays.
Journal:
IEEE transactions on neural networks and learning systems
Published Date:
Aug 31, 2022
Abstract
This article investigates the multistability and stabilization of fractional-order competitive neural networks (FOCNNs) with unbounded time-varying delays. By utilizing the monotone operator, several sufficient conditions of the coexistence of equilibrium points (EPs) are obtained for FOCNNs with concave-convex activation functions. And then, the multiple μ -stability of delayed FOCNNs is derived by the analytical method. Meanwhile, several comparisons with existing work are shown, which implies that the derived results cover the inverse-power stability and Mittag-Leffler stability as special cases. Moreover, the criteria on the stabilization of FOCNNs with uncertainty are established by designing a controller. Compared with the results of fractional-order neural networks, the obtained results in this article enrich and improve the previous results. Finally, three numerical examples are provided to show the effectiveness of the presented results.