Systematic Improvement of the Performance of Machine Learning Scoring Functions by Incorporating Features of Protein-Bound Water Molecules.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Water molecules at the ligand-protein interfaces play crucial roles in the binding of the ligands, but the behavior of protein-bound water is largely ignored in many currently used machine learning (ML)-based scoring functions (SFs). In an attempt to improve the prediction performance of existing ML-based SFs, we estimated the water distribution with a HydraMap (HM) method and then incorporated the features extracted from protein-bound waters obtained in this way into three ML-based SFs: RF-Score, ECIF, and PLEC. It was found that a combination of HM-based features can consistently improve the performance of all three SFs, including their scoring, ranking, and docking power. HydraMap-based features show consistently good performance with both crystal structures and docked structures, demonstrating their robustness for SFs. Overall, HM-based features, which are a statistical representation of hydration sites at protein-ligand interfaces, are expected to improve the prediction performance for diverse SFs.

Authors

  • Xiaoyang Qu
    State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005 P. R. China.
  • Lina Dong
    State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005 P. R. China.
  • Jinyan Zhang
    State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005 P. R. China.
  • Yubing Si
    College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
  • Binju Wang
    State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005 P. R. China.