PD-BertEDL: An Ensemble Deep Learning Method Using BERT and Multivariate Representation to Predict Peptide Detectability.

Journal: International journal of molecular sciences
Published Date:

Abstract

Peptide detectability is defined as the probability of identifying a peptide from a mixture of standard samples, which is a key step in protein identification and analysis. Exploring effective methods for predicting peptide detectability is helpful for disease treatment and clinical research. However, most existing computational methods for predicting peptide detectability rely on a single information. With the increasing complexity of feature representation, it is necessary to explore the influence of multivariate information on peptide detectability. Thus, we propose an ensemble deep learning method, PD-BertEDL. Bidirectional encoder representations from transformers (BERT) is introduced to capture the context information of peptides. Context information, sequence information, and physicochemical information of peptides were combined to construct the multivariate feature space of peptides. We use different deep learning methods to capture the high-quality features of different categories of peptides information and use the average fusion strategy to integrate three model prediction results to solve the heterogeneity problem and to enhance the robustness and adaptability of the model. The experimental results show that PD-BertEDL is superior to the existing prediction methods, which can effectively predict peptide detectability and provide strong support for protein identification and quantitative analysis, as well as disease treatment.

Authors

  • Huiqing Wang
    College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
  • Juan Wang
    Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China.
  • Zhipeng Feng
    College of Information and Computer, Taiyuan University of Technology, Taiyuan 030024, China.
  • Ying Li
    School of Information Engineering, Chang'an University, Xi'an 710010, China.
  • Hong Zhao
    Key Laboratory of Medical Image Computing of Ministry of Education, Northeastern University, Shenyang, China.