A multi-feature deep learning system to enhance glaucoma severity diagnosis with high accuracy and fast speed.

Journal: Journal of biomedical informatics
Published Date:

Abstract

Glaucoma is the leading cause of irreversible blindness, and the early detection and timely treatment are essential for glaucoma management. However, due to the interindividual variability in the characteristics of glaucoma onset, a single feature is not yet sufficient for monitoring glaucoma progression in isolation. There is an urgent need to develop more comprehensive diagnostic methods with higher accuracy. In this study, we proposed a multi- feature deep learning (MFDL) system based on intraocular pressure (IOP), color fundus photograph (CFP) and visual field (VF) to classify the glaucoma into four severity levels. We designed a three-phase framework for glaucoma severity diagnosis from coarse to fine, which contains screening, detection and classification. We trained it on 6,131 samples from 3,324 patients and tested it on independent 240 samples from 185 patients. Our results show that MFDL achieved a higher accuracy of 0.842 (95 % CI, 0.795-0.888) than the direct four classification deep learning (DFC-DL, accuracy of 0.513 [0.449-0.576]), CFP-based single-feature deep learning (CFP-DL, accuracy of 0.483 [0.420-0.547]) and VF-based single-feature deep learning (VF-DL, accuracy of 0.725 [0.668-0.782]). Its performance was statistically significantly superior to that of 8 juniors. It also outperformed 3 seniors and 1 expert, and was comparable with 2 glaucoma experts (0.842 vs 0.854, p = 0.663; 0.842 vs 0.858, p = 0.580). With the assistance of MFDL, junior ophthalmologists achieved statistically significantly higher accuracy performance, with the increased accuracy ranged from 7.50 % to 17.9 %, and that of seniors and experts were 6.30 % to 7.50 % and 5.40 % to 7.50 %. The mean diagnosis time per patient of MFDL was 5.96 s. The proposed model can potentially assist ophthalmologists in efficient and accurate glaucoma diagnosis that could aid the clinical management of glaucoma.

Authors

  • Ying Xue
    Beijing Centers for Preventive Medical Research, Beijing 100013, China.
  • Jiazhu Zhu
    College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China.
  • Xiaoling Huang
    Department of Ophthalmology, The Second Affiliated Hospital of Zhejiang University, College of Medicine, Hangzhou, 310009, China.
  • Xiaobin Xu
    Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
  • Xiaojing Li
    School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
  • Yameng Zheng
    Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
  • Zhijing Zhu
    School of Medicine, School of Computer & Computing Science, Zhejiang University City College, Hangzhou 310015, China.
  • Kai Jin
    Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
  • Juan Ye
    Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
  • Wei Gong
    State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, Hubei 430079, China.
  • Ke Si
    Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University School of Medicine, Hangzhou 310003, China.