Forgetting memristor based STDP learning circuit for neural networks.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

The circuit implementation of STDP based on memristor is of great significance for the application of neural network. However, recent research shows that the research on the pure circuit implementation of forgetting memristor and STDP is still rare. This paper proposes a new STDP learning rule implementation circuit based on the forgetting memristor. This kind of forgetting memory resistance synapse makes the neural network have the function of time-division multiplexing, but the instability of short-term memory will affect the learning ability of the neural network. This paper analyzes and discusses the influence of synapses with long-term and short-term memory on the learning characteristics of neural network STDP, which lays a foundation for the construction of time-division multiplexing neural network with long-term and short-term memory synapses. Through this circuit, it is found that the volatile memristor has different behaviors to the stimulus signal in different initial states, and the resulting LTP phenomenon is more in line with the forgetting effect in biology. This circuit has multiple adjustable parameters, which can fit the STDP learning rules under different conditions. The application of neural network proves the availability of this circuit.

Authors

  • Wenhao Zhou
    The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defect, Translational Medicine Research Center of Children Development and Diseases, Pediatrics Research Institute, Shanghai, China.
  • Shiping Wen
  • Yi Liu
    Department of Interventional Therapy, Ningbo No. 2 Hospital, Ningbo, China.
  • Lu Liu
    College of Pharmacy, Harbin Medical University, Harbin, China.
  • Xin Liu
    Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences, Weifang, Shandong, China.
  • Ling Chen
    Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, United States.