Antibiotic discovery in the artificial intelligence era.

Journal: Annals of the New York Academy of Sciences
Published Date:

Abstract

As the global burden of antibiotic resistance continues to grow, creative approaches to antibiotic discovery are needed to accelerate the development of novel medicines. A rapidly progressing computational revolution-artificial intelligence-offers an optimistic path forward due to its ability to alleviate bottlenecks in the antibiotic discovery pipeline. In this review, we discuss how advancements in artificial intelligence are reinvigorating the adoption of past antibiotic discovery models-namely natural product exploration and small molecule screening. We then explore the application of contemporary machine learning approaches to emerging areas of antibiotic discovery, including antibacterial systems biology, drug combination development, antimicrobial peptide discovery, and mechanism of action prediction. Lastly, we propose a call to action for open access of high-quality screening datasets and interdisciplinary collaboration to accelerate the rate at which machine learning models can be trained and new antibiotic drugs can be developed.

Authors

  • Telmah Lluka
    Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
  • Jonathan M Stokes
    Department of Biological Engineering, Synthetic Biology Center, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Machine Learning for Pharmaceutical Discovery and Synthesis Consortium, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.