The use of deep learning in interventional radiotherapy (brachytherapy): A review with a focus on open source and open data.

Journal: Zeitschrift fur medizinische Physik
Published Date:

Abstract

Deep learning advanced to one of the most important technologies in almost all medical fields. Especially in areas, related to medical imaging it plays a big role. However, in interventional radiotherapy (brachytherapy) deep learning is still in an early phase. In this review, first, we investigated and scrutinised the role of deep learning in all processes of interventional radiotherapy and directly related fields. Additionally, we summarised the most recent developments. For better understanding, we provide explanations of key terms and approaches to solving common deep learning problems. To reproduce results of deep learning algorithms both source code and training data must be available. Therefore, a second focus of this work is on the analysis of the availability of open source, open data and open models. In our analysis, we were able to show that deep learning plays already a major role in some areas of interventional radiotherapy, but is still hardly present in others. Nevertheless, its impact is increasing with the years, partly self-propelled but also influenced by closely related fields. Open source, data and models are growing in number but are still scarce and unevenly distributed among different research groups. The reluctance in publishing code, data and models limits reproducibility and restricts evaluation to mono-institutional datasets. The conclusion of our analysis is that deep learning can positively change the workflow of interventional radiotherapy but there is still room for improvements when it comes to reproducible results and standardised evaluation methods.

Authors

  • Tobias Fechter
    Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.
  • Ilias Sachpazidis
    Division of Medical Physics, Department of Radiation Oncology, Medical Center University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; German Cancer Consortium (DKTK), Partner Site Freiburg, Germany.
  • Dimos Baltas
    Division of Medical Physics, Department of Radiation Oncology, Medical Center, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.