A Deep Learning-Based Model for Predicting Abnormal Liver Function in Workers in the Automotive Manufacturing Industry: A Cross-Sectional Survey in Chongqing, China.

Journal: International journal of environmental research and public health
Published Date:

Abstract

To identify the influencing factors and develop a predictive model for the risk of abnormal liver function in the automotive manufacturing industry works in Chongqing. Automotive manufacturing workers in Chongqing city surveyed during 2019-2021 were used as the study subjects. Logistic regression analysis was used to identify the influencing factors of abnormal liver function. A restricted cubic spline model was used to further explore the influence of the length of service. Finally, a deep neural network-based model for predicting the risk of abnormal liver function among workers was developed. Of all 6087 study subjects, a total of 1018 (16.7%) cases were detected with abnormal liver function. Increased BMI, length of service, DBP, SBP, and being male were independent risk factors for abnormal liver function. The risk of abnormal liver function rises sharply with increasing length of service below 10 years. AUC values of the model were 0.764 (95% CI: 0.746-0.783) and 0.756 (95% CI: 0.727-0.786) in the training and test sets, respectively. The other four evaluation indices of the DNN model also achieved good values.

Authors

  • Linghao Ni
    School of Public Health, Chongqing Medical University, Chongqing 400016, China.
  • Fengqiong Chen
    Department of Occupational Health and Radiation Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China.
  • Ruihong Ran
    Department of Occupational Health and Radiation Health, Chongqing Center for Disease Control and Prevention, Chongqing 400042, China.
  • Xiaoping Li
    Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, China.
  • Nan Jin
    Chongqing Center for Disease Control and Prevention, Department of Occupational Health and Radiation Health, Chongqing 400042, China.
  • Huadong Zhang
    Chongqing Center for Disease Control and Prevention, Department of Occupational Health and Radiation Health, Chongqing 400042, China.
  • Bin Peng
    Xiangya School of Nursing, Central South University, Changsha, Hunan, China.