Contrastive language and vision learning of general fashion concepts.

Journal: Scientific reports
PMID:

Abstract

The steady rise of online shopping goes hand in hand with the development of increasingly complex ML and NLP models. While most use cases are cast as specialized supervised learning problems, we argue that practitioners would greatly benefit from general and transferable representations of products. In this work, we build on recent developments in contrastive learning to train FashionCLIP, a CLIP-like model adapted for the fashion industry. We demonstrate the effectiveness of the representations learned by FashionCLIP with extensive tests across a variety of tasks, datasets and generalization probes. We argue that adaptations of large pre-trained models such as CLIP offer new perspectives in terms of scalability and sustainability for certain types of players in the industry. Finally, we detail the costs and environmental impact of training, and release the model weights and code as open source contribution to the community.

Authors

  • Patrick John Chia
    Coveo, Montreal, Canada. pchia@coveo.com.
  • Giuseppe Attanasio
    Bocconi University, Milan, Italy.
  • Federico Bianchi
  • Silvia Terragni
    Telepathy Labs, Zurich, Switzerland.
  • Ana Rita Magalhães
    Farfetch, Porto, Portugal.
  • Diogo Goncalves
    Farfetch, Porto, Portugal.
  • Ciro Greco
    South Park Commons, New York, USA.
  • Jacopo Tagliabue
    South Park Commons, New York, USA.