Adaptive Prescribed Performance Control of A Flexible-Joint Robotic Manipulator With Dynamic Uncertainties.

Journal: IEEE transactions on cybernetics
Published Date:

Abstract

An adaptive fuzzy control strategy is proposed for a single-link flexible-joint robotic manipulator (SFRM) with prescribed performance, in which the unknown nonlinearity is identified by adopting the fuzzy-logic system. By designing a performance function, the transient performance of the control system is guaranteed. To stabilize the SFRM, a dynamic signal is applied to handle the unmodeled dynamics. To cut down the communication load of the channel, the event-triggered control law is developed based on the switching threshold strategy. The Lyapunov stability theory and backstepping technique are applied coordinately to design the control strategy. The semiglobally ultimately uniformly boundedness can be ensured for all signals in the closed-loop system. The designed control method can also guarantee that the tracking error can converge to a small neighborhood of zero within the prescribed performance boundaries. At the end of the article, two illustrative examples are shown to validate the designed event-triggered controller.

Authors

  • Hui Ma
    National Centre for Sensor Research and School of Biotechnology, Dublin City University, Collins Avenue, D09 Y5N0, 9 Dublin, Ireland.
  • Qi Zhou
  • Hongyi Li
    State Key Laboratory of Robotics, Shenyang Institute of Automation, University of Chinese Academy of Sciences, Shenyang, Liaoning, P. R. China.
  • Renquan Lu