Principles and Validations of an Artificial Intelligence-Based Recommender System Suggesting Acceptable Food Changes.

Journal: The Journal of nutrition
Published Date:

Abstract

BACKGROUND: Along with the popularity of smartphones, artificial intelligence-based personalized suggestions can be seen as promising ways to change eating habits toward more desirable diets.

Authors

  • Jules Vandeputte
    Université Paris-Saclay, INRAE, AgroParisTech, UMR MIA Paris-Saclay, Palaiseau, France.
  • Pierrick Herold
    Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France.
  • Mykyt Kuslii
    Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France.
  • Paolo Viappiani
    Université Paris Dauphine, Université PSL, CNRS, LAMSADE, Paris, France.
  • Laurent Muller
    Université Grenoble Alpes Grenoble INP Institut d'Ingenierie et de Management, Univ. Grenoble Alpes, INRAE, CNRS, Grenoble INP, GAEL, Grenoble, France.
  • Christine Martin
    Université Paris-Saclay, INRAE, AgroParisTech, UMR MIA Paris-Saclay, Palaiseau, France.
  • Olga Davidenko
    Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France.
  • Fabien Delaere
    Danone Nutricia Research, Centre Daniel Carasso, RD 128, Palaiseau, France.
  • Cristina Manfredotti
    Université Paris-Saclay, INRAE, AgroParisTech, UMR MIA Paris-Saclay, Palaiseau, France.
  • Antoine Cornuéjols
    Université Paris-Saclay, INRAE, AgroParisTech, UMR MIA Paris-Saclay, Palaiseau, France.
  • Nicolas Darcel
    Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France. Electronic address: nicolas.darcel@agroparistech.fr.