A New Approach to Optimize SVM for Insulator State Identification Based on Improved PSO Algorithm.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

The failure of insulators may seriously threaten the safe operation of the power system, where the state detection of high-voltage insulators is a must for the normal and safe operation of the power system. Based on the data of insulators in aerial images, this work explored an enhanced particle swarm algorithm to optimize the parameters of the support vector machine. A support vector machine model was therefore established for the identification of the normal and defective states of the insulators. This methodology works with the structure minimization principle of SVM and the characteristics of particle swarm fast optimization. First, the aerial insulator image was segmented as a target by way of the seed region growth based on double-layer cascade morphological improvements, and then, HOG features plus GLCM features were extracted as sample data. Finally, an ameliorated PSO-SVM classifier was designed to realize insulator state identification. Comparisons were made between PSO-SVM and conventional machine learning algorithms, SVM and Random Forest, and an optimization algorithm, Gray Wolf Optimization Support Vector Machine (GWO-SVM), and advanced neural network CNN. The experimental results showed that the performance of the algorithm proposed in this paper touched the top level, where the recognition accuracy rate was 92.11%, the precision rate 90%, the recall rate 94.74%, and the F1-score 92.31%.

Authors

  • Lepeng Song
    School of Electrical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
  • Qin Liang
    School of Electrical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.
  • Hui Chen
    Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and Science Xiangyang 441000 China.
  • Hao Hu
    Department of Geography and Geographic Information Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
  • Yu Luo
    Department of Radiology, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai 200081, China.
  • Yanling Luo
    School of Electrical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China.