A deep learning model for prognosis prediction after intracranial hemorrhage.

Journal: Journal of neuroimaging : official journal of the American Society of Neuroimaging
Published Date:

Abstract

BACKGROUND AND PURPOSE: Intracranial hemorrhage (ICH) is a common life-threatening condition that must be rapidly diagnosed and treated. However, there is still a lack of consensus regarding treatment, driven to some extent by prognostic uncertainty. While several prediction models for ICH detection have already been published, here we present a deep learning predictive model for ICH prognosis.

Authors

  • Amaia Pérez Del Barrio
    Servicio de Radiodiagnóstico, Hospital Universitario "Marqués de Valdecilla", Santander, Spain.
  • Anna Salut Esteve Domínguez
    Advanced Computation and e-Science, Instituto de Física de Cantabria (IFCA), Consejo Superior de Investigaciones Científicas (CSIC), Santander, Spain.
  • Pablo Menéndez Fernández-Miranda
    Servicio de Radiodiagnóstico, Hospital Universitario "Marqués de Valdecilla", Santander, Spain.
  • Pablo Sanz Bellón
    Servicio de Radiodiagnóstico, Hospital Universitario "Marqués de Valdecilla", Santander, Spain.
  • David Rodríguez González
    Advanced Computation and e-Science, Instituto de Física de Cantabria (IFCA), Consejo Superior de Investigaciones Científicas (CSIC), Santander, Spain.
  • Lara Lloret Iglesias
    Advanced Computation and e-Science, Instituto de Física de Cantabria (IFCA), Consejo Superior de Investigaciones Científicas (CSIC), Santander, Spain.
  • Enrique Marqués Fraguela
    Servicio de Radiofísica, Hospital Universitario "Marqués de Valdecilla", Santander, Spain.
  • Andrés A González Mandly
    Servicio de Radiodiagnóstico, Hospital Universitario "Marqués de Valdecilla", Santander, Spain.
  • José A Vega
    Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.