Fast Sleep Stage Classification Using Cascaded Support Vector Machines with Single-Channel EEG Signals.

Journal: Sensors (Basel, Switzerland)
Published Date:

Abstract

Long-term sleep stage monitoring is very important for the diagnosis and treatment of insomnia. With the development of wearable electroencephalogram (EEG) devices, we developed a fast and accurate sleep stage classification method in this study with single-channel EEG signals for practical applications. The original sleep recordings were collected from the Sleep-EDF database. The wavelet threshold denoising (WTD) method and wavelet packet transformation (WPT) method were applied as signal preprocessing to extract six kinds of characteristic waves. With a comprehensive feature system including time, frequency, and nonlinear dynamics, we obtained the sleep stage classification results with different Support Vector Machine (SVM) models. We proposed a novel classification method based on cascaded SVM models with various features extracted from denoised EEG signals. To enhance the accuracy and generalization performance of this method, nonlinear dynamics features were taken into consideration. With nonlinear dynamics features included, the average classification accuracy was up to 88.11% using this method. In addition, with cascaded SVM models, the classification accuracy of the non-rapid eye movement sleep stage 1 (N1) was enhanced from 41.5% to 55.65% compared with the single SVM model, and the overall classification time for each epoch was less than 1.7 s. Moreover, we demonstrated that it was possible to apply this method for long-term sleep stage monitor applications.

Authors

  • Dezhao Li
    Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China.
  • Yangtao Ruan
    Zhejiang Provincial Key Laboratory of Quantum Precision Measurement, Collaborative Innovation Center for Information Technology in Biological and Medical Physics, College of Science, Zhejiang University of Technology, Hangzhou 310023, China.
  • Fufu Zheng
    Department of Urology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China. zhengfuf@mail.sysu.edu.cn.
  • Yan Su
    State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
  • Qiang Lin
    College of Sciences, Zhejiang University of Technology, China.