TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Herein, a robust and reproducible eXplainable Artificial Intelligence (XAI) approach is presented, which allows prediction of developmental toxicity, a challenging human-health endpoint in toxicology. The application of XAI as an alternative method is of the utmost importance with developmental toxicity being one of the most animal-intensive areas of regulatory toxicology. In this work, the established CAESAR (Computer Assisted Evaluation of industrial chemical Substances According to Regulations) training set made of 234 chemicals for model learning is employed. Two test sets, including as a whole 585 chemicals, were instead used for validation and generalization purposes. The proposed framework favorably compares with the state-of-the-art approaches in terms of accuracy, sensitivity, and specificity, thus resulting in a reliable support system for developmental toxicity ensuring informativeness, uncertainty estimation, generalization, and transparency. Based on the eXtreme Gradient Boosting (XGB) algorithm, our predictive model provides easy interpretative keys based on specific molecular descriptors and structural alerts enabling one to distinguish toxic and nontoxic chemicals. Inspired by the Organisation for Economic Co-operation and Development (OECD) principles for the validation of Quantitative Structure-Activity Relationships (QSARs) for regulatory purposes, the results are summarized in a standard report in portable document format, enclosing also details concerned with a density-based model applicability domain and SHAP (SHapley Additive exPlanations) explainability, the latter particularly useful to better understand the effective roles played by molecular features. Notably, our model has been implemented in TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), a free of charge web platform available at http://tiresia.uniba.it.

Authors

  • Maria Vittoria Togo
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Fabrizio Mastrolorito
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Fulvio Ciriaco
    Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy.
  • Daniela Trisciuzzi
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Anna Rita Tondo
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Nicola Gambacorta
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Loredana Bellantuono
    Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.
  • Alfonso Monaco
    Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: Alfonso.Monaco@ba.infn.it.
  • Francesco Leonetti
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Roberto Bellotti
    Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: roberto.bellotti@uniba.it.
  • Cosimo Damiano Altomare
    Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.
  • Nicola Amoroso
    Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy; Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy. Electronic address: nicola.amoroso@ba.infn.it.
  • Orazio Nicolotti
    Department of Pharmacy- Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.