Physics-informed machine learning methods for biomass gasification modeling by considering monotonic relationships.

Journal: Bioresource technology
Published Date:

Abstract

Machine learning methods have recently shown a broad application prospect in biomass gasification modeling. However, a significant drawback of the machine learning approaches is their poor physical interpretability when relying on limited experimental data. In the present work, a physics-informed neural network method (PINN) is developed to predict biomass gasification products (N, H, CO, CO, and CH). PINN simultaneously considers regression, structure, and physical monotonicity constraints in the loss function, providing physically feasible predictions. Specifically, the PINN models have outperformed prediction capability (average test R 0.91-0.97) compared to five other machine learning methods through 50 times random sample classifications. Furthermore, it is demonstrated that the developed models can maintain correct monotonicity even if the feedstock characteristics or gasification conditions are outside the training data. By using a reliable physical mechanism to guide machine learning, the model can ensure better generalizability and scientific interpretability.

Authors

  • Shaojun Ren
    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China. Electronic address: rsj@seu.edu.cn.
  • Shiliang Wu
    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
  • Qihang Weng
    Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.