Exposure to charcoal biomass (CB) pollutants affects the cardiorespiratory system. We assessed cardiopulmonary responses (CPR) to exercise in charcoal producers (CPs) compared to farmers and evaluated the prevalence of exercise-induced bronchoconstri...
This study tackles the challenge of accurately estimating pasture biomass by integrating proximal sensing, remote sensing, and machine learning techniques. Field measurements of vegetation height collected using the PaddockTrac ultrasonic sensor were...
International journal of biological macromolecules
40139616
The application of machine learning in pullulan biofermentation has demonstrated significant potential. Explainable machine learning enhances model transparency and interpretability by revealing the relationships between variables. In this study, we ...
Microbial production of industrially important exopolysaccharide (EPS) from extremophiles has several advantages. In this study, key media components (i.e., sucrose, yeast extract, and urea) were optimized for biomass growth and extracellular EPS pro...
A general method for predicting gas yield is crucial in biomass and plastics co-pyrolysis. This study employed two machine learning methods to forecast gas yield in co-pyrolysis. Comparing the predictive performance of Support Vector Regression (SVR)...
This study explores the production of poly alpha olefin (PAO) from biomass as an environmentally friendly alternative to fossil fuel-based methods, aiming to reduce greenhouse gas (GHG) emissions. The primary goal is to design a process for convertin...
The present study revealed the higher extraction potential of sustainable choline chloride (ChCl) and ethylene glycol (EG) based deep eutectic solvent (DES) from Mentha arvensis via microwave irradiation. The categorical boosting (CatBoost) machine l...
Producing single-cell protein (SCP) from food-processing wastewater offers a sustainable approach to resource recovery, animal feed production, and wastewater treatment. Decision-makers need accurate system performance data under variable influent co...
Chemical reaction neural networks (CRNN) and density functional theory (DFT) are gaining attention in biomass pyrolysis mechanism research. Reaction pathways are often speculated based on a single method, influenced by expert knowledge. To address th...
This study investigated the potential of using remote sensing indices with artificial neural networks (ANNs) to quantify the responses of dry bean plants to water stress. Two field experiments were conducted with three irrigation regimes: 100% (B100)...