Machine learning for predicting phenotype from genotype and environment.

Journal: Current opinion in biotechnology
Published Date:

Abstract

Predicting phenotype with genomic and environmental information is critically needed and challenging. Machine learning methods have emerged as powerful tools to make accurate predictions from large and complex biological data. Here, we review the progress of phenotype prediction models enabled or improved by machine learning methods. We categorized the applications into three scenarios: prediction with genotypic information, with environmental information, and with both. In each scenario, we illustrate the practicality of prediction models, the advantages of machine learning, and the challenges of modeling complex relationships. We discuss the promising potential of leveraging machine learning and genetics theories to develop models that can predict phenotype and also interpret the biological consequences of changes in genotype and environment.

Authors

  • Tingting Guo
    National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China; Medical Ultrasound Image Computing (MUSIC) Lab, Shenzhen, China.
  • Xianran Li
    USDA, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164, USA; Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA. Electronic address: xianran.li@usda.gov.