Automatic Deep Learning-Based Pipeline for Automatic Delineation and Measurement of Fetal Brain Structures in Routine Mid-Trimester Ultrasound Images.

Journal: Fetal diagnosis and therapy
PMID:

Abstract

INTRODUCTION: The aim of this study was to develop a pipeline using state-of-the-art deep learning methods to automatically delineate and measure several of the most important brain structures in fetal brain ultrasound (US) images.

Authors

  • David Coronado-Gutiérrez
    Transmural Biotech S.L., Barcelona, Spain (Dr Burgos-Artizzu and Mr Coronado-Gutiérrez); BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Institut D'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain (Dr Burgos-Artizzu, Mr Coronado-Gutiérrez, and Drs Valenzuela-Alcaraz, Vellvé, Eixarch, Crispi, Bonet-Carne, Bennasar, and Gratacos).
  • Elisenda Eixarch
    Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain.
  • Elena Monterde
    BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona), Barcelona, Spain.
  • Isabel Matas
    BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona), Barcelona, Spain.
  • Paola Traversi
    BCNatal | Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu, University of Barcelona), Barcelona, Spain.
  • Eduard Gratacós
    Fetal i+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Barcelona, Spain.
  • Elisenda Bonet-Carne
    University College London, London, United Kingdom.
  • Xavier P Burgos-Artizzu
    Division of Engineering and Applied Sciences 136-93, California Institute of Technology, Pasadena, CA 91125.