Industrial wastewater source tracing: The initiative of SERS spectral signature aided by a one-dimensional convolutional neural network.
Journal:
Water research
PMID:
36738556
Abstract
The spectral fingerprint is a significant concept in nontarget screening of environmental samples to direct identification efforts to relevant and important features. Surface-enhanced Raman scattering (SERS) has long been recognized as an optical method that can provide fingerprint-like chemical information at the single-molecule level. Here, the advanced one-dimensional convolutional neural network (1D-CNN) approach was applied to accurately identify the SERS spectral signature of industrial wastewaters for source tracing. A total of 66,000 SERS spectra were acquired from wastewaters of 22 factories across 10 industrial categories at three excitation wavelengths after data augmentation. The dataset was used to train a 1D-CNN model consisting of three convolutional layers to achieve adequate feature extraction of SERS spectra. As a proof-of-concept, multimixed wastewater samples were used to simulate practical pollution scenarios and evaluate the application potential of the model. The SERS-1D-CNN platform can identify the amount and factory information of wastewaters in multimixed samples, which achieves a recognition accuracy rate of 97.33%. The results suggest that even in a complex and unknown water environment, the 1D-CNN model can accurately identify industrial wastewaters in precollected datasets, exhibiting excellent potential in pollution source tracing.