High-throughput 3DRA segmentation of brain vasculature and aneurysms using deep learning.
Journal:
Computer methods and programs in biomedicine
PMID:
36709557
Abstract
BACKGROUND AND OBJECTIVES: Automatic segmentation of the cerebral vasculature and aneurysms facilitates incidental detection of aneurysms. The assessment of aneurysm rupture risk assists with pre-operative treatment planning and enables in-silico investigation of cerebral hemodynamics within and in the vicinity of aneurysms. However, ensuring precise and robust segmentation of cerebral vessels and aneurysms in neuroimaging modalities such as three-dimensional rotational angiography (3DRA) is challenging. The vasculature constitutes a small proportion of the image volume, resulting in a large class imbalance (relative to surrounding brain tissue). Additionally, aneurysms and vessels have similar image/appearance characteristics, making it challenging to distinguish the aneurysm sac from the vessel lumen.