Robust exponential stability of discrete-time uncertain impulsive stochastic neural networks with delayed impulses.
Journal:
Neural networks : the official journal of the International Neural Network Society
Published Date:
Jan 21, 2023
Abstract
This paper is devoted to the study of the robust exponential stability (RES) of discrete-time uncertain impulsive stochastic neural networks (DTUISNNs) with delayed impulses. Using Lyapunov function methods and Razumikhin techniques, a number of sufficient conditions for mean square (RES-ms) robust exponential stability are derived. The obtained results show that the hybrid dynamic is RES-ms with regard to lower boundary of impulse interval if the discrete-time stochastic neural networks (DTSNNs) is RES-ms and that the impulsive effects are instable. Conversely, if DTSNNs is not RES-ms, impulsive effects can induce unstable neural networks (NNs) to stabilize again concerning an upper bound of the impulsive interval. The results obtained in this study have a broader scope of application than some previously existing findings. Two numerical examples were presented to verify the availability and advantages of the results.