Partial label learning: Taxonomy, analysis and outlook.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Partial label learning (PLL) is an emerging framework in weakly supervised machine learning with broad application prospects. It handles the case in which each training example corresponds to a candidate label set and only one label concealed in the set is the ground-truth label. In this paper, we propose a novel taxonomy framework for PLL including four categories: disambiguation strategy, transformation strategy, theory-oriented strategy and extensions. We analyze and evaluate methods in each category and sort out synthetic and real-world PLL datasets which are all hyperlinked to the source data. Future work of PLL is profoundly discussed in this article based on the proposed taxonomy framework.

Authors

  • Yingjie Tian
    Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China. Electronic address: tyj@ucas.ac.cn.
  • Xiaotong Yu
    School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Big Data Mining and Knowledge Management, Chinese Academy of Sciences, Beijing 100190, China.
  • Saiji Fu
    School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China.