Prediction of gestational diabetes using deep learning and Bayesian optimization and traditional machine learning techniques.

Journal: Medical & biological engineering & computing
Published Date:

Abstract

The study aimed to develop a clinical diagnosis system to identify patients in the GD risk group and reduce unnecessary oral glucose tolerance test (OGTT) applications for pregnant women who are not in the GD risk group using deep learning algorithms. With this aim, a prospective study was designed and the data was taken from 489 patients between the years 2019 and 2021, and informed consent was obtained. The clinical decision support system for the diagnosis of GD was developed using the generated dataset with deep learning algorithms and Bayesian optimization. As a result, a novel successful decision support model was developed using RNN-LSTM with Bayesian optimization that gave 95% sensitivity and 99% specificity on the dataset for the diagnosis of patients in the GD risk group by obtaining 98% AUC (95% CI (0.95-1.00) and p < 0.001). Thus, with the clinical diagnosis system developed to assist physicians, it is planned to save both cost and time, and reduce possible adverse effects by preventing unnecessary OGTT for patients who are not in the GD risk group.

Authors

  • Burçin Kurt
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey. burcinnkurt@gmail.com.
  • Beril Gürlek
    Faculty of Medicine, Department of Gynecology and Obstetrics, Recep Tayyip Erdoğan University, Rize, Turkey.
  • Seda Keskin
    Faculty of Medicine, Department of Gynecology and Obstetrics, Ordu University, Ordu, Turkey.
  • Sinem Özdemir
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.
  • Özlem Karadeniz
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.
  • İlknur Buçan Kırkbir
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.
  • Tuğba Kurt
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.
  • Serbülent Ünsal
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.
  • Cavit Kart
    Faculty of Medicine, Department of Gynecology and Obstetrics, Karadeniz Technical University, Trabzon, Turkey.
  • Neslihan Baki
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.
  • Kemal Turhan
    Faculty of Medicine, Department of Biostatistics and Medical Informatics, Karadeniz Technical University, Trabzon, Turkey.