Optimal H tracking control of nonlinear systems with zero-equilibrium-free via novel adaptive critic designs.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

In this paper, a novel adaptive critic control method is designed to solve an optimal H tracking control problem for continuous nonlinear systems with nonzero equilibrium based on adaptive dynamic programming (ADP). To guarantee the finiteness of a cost function, traditional methods generally assume that the controlled system has a zero equilibrium point, which is not true in practical systems. In order to overcome such obstacle and realize H optimal tracking control, this paper proposes a novel cost function design with respect to disturbance, tracking error and the derivative of tracking error. Based on the designed cost function, the H control problem is formulated as two-player zero-sum differential games, and then a policy iteration (PI) algorithm is proposed to solve the corresponding Hamilton-Jacobi-Isaacs (HJI) equation. In order to obtain the online solution to the HJI equation, a single-critic neural network structure based on PI algorithm is established to learn the optimal control policy and the worst-case disturbance law. It is worth mentioning that the proposed adaptive critic control method can simplify the controller design process when the equilibrium of the systems is not zero. Finally, simulations are conducted to evaluate the tracking performance of the proposed control methods.

Authors

  • Zhinan Peng
  • Hanqi Ji
    School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Chaobin Zou
    School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China.
  • Yiqun Kuang
    School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China. Electronic address: yqkuang@uestc.edu.cn.
  • Hong Cheng
    Department of Neurology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. ch8706@sohu.com.
  • Kaibo Shi
    School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China. Electronic address: skbs111@163.com.
  • Bijoy Kumar Ghosh
    Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409-1042, USA.