Standardizing analysis of intra-tumoral heterogeneity with computational pathology.

Journal: Genes, chromosomes & cancer
Published Date:

Abstract

Many malignant cancers like glioblastoma are highly adaptive diseases that dynamically change their regional biology to survive and thrive under diverse microenvironmental and therapeutic pressures. While the concept of intra-tumoral heterogeneity has become a major paradigm in cancer research and care, systematic approaches to assess and document bio-variation in cancer are still in their infancy. Here we discuss existing approaches and challenges to documenting intra-tumoral heterogeneity and emerging computational approaches that leverage artificial intelligence to begin to overcome these limitations. We propose how these emerging techniques can be coupled with a diversity of molecular tools to address intra-tumoral heterogeneity more systematically in research and in practice, especially across larger specimens and longitudinal analyses. Systematic documentation and characterization of heterogeneity across entire tumor specimens and their longitudinal evolution has the potential to improve our understanding and treatment of cancer.

Authors

  • Ameesha Paliwal
    Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
  • Kevin Faust
    Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON, M5S 2E4, Canada.
  • Azhar Alshoumer
    Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
  • Phedias Diamandis
    Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. p.diamandis@mail.utoronto.ca.