Constructing metabolism-protein interaction relationship to identify glioma prognosis using deep learning.

Journal: Computers in biology and medicine
Published Date:

Abstract

Glioma is heterogeneous disease that requires classification into subtypes with similar clinical phenotypes, prognosis or treatment responses. Metabolic-protein interaction (MPI) can provide meaningful insights into cancer heterogeneity. Moreover, the potential of lipids and lactate for identifying prognostic subtypes of glioma remains relatively unexplored. Therefore, we proposed a method to construct an MPI relationship matrix (MPIRM) based on a triple-layer network (Tri-MPN) combined with mRNA expression, and processed the MPIRM by deep learning to identify glioma prognostic subtypes. These Subtypes with significant differences in prognosis were detected in glioma (p-value < 2e-16, 95% CI). These subtypes had a strong correlation in immune infiltration, mutational signatures and pathway signatures. This study demonstrated the effectiveness of node interaction from MPI networks in understanding the heterogeneity of glioma prognosis.

Authors

  • Qingpei Lai
    Shenzhen Institute of Advanced Technology, Chinese Academy of Science, 518055, Shenzhen, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, 518055, Shenzhen, China.
  • Xiang Liu
    College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230009, China.
  • Fan Yang
    School of Electrical Engineering and Automation, Jiangsu Normal University, Xuzhou, China.
  • Jie Li
    Guangdong-Hong Kong-Macao Greater Bay Area Artificial Intelligence Application Technology Research Institute, Shenzhen Polytechnic University, Shenzhen, China.
  • Yaoqin Xie
    Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China.
  • Wenjian Qin
    Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.