Brain tumors have complex structures, and their shape, density, and size can vary widely. Consequently, their accurate classification, which involves identifying features that best describe the tumor data, is challenging. Using classical 2D texture f...
Immunogenic cell death (ICD) is capable of activating both innate and adaptive immune responses. In this study, we aimed to develop an ICD-related signature in glioma patients and facilitate the assessment of their prognosis and drug sensitivity. Con...
We identified a gene panel comprising 71 glycosyltransferases (GTs) that alter glycan patterns on cancer cells as they become more virulent. When these cancer-pattern GTs (CPGTs) were run through an algorithm trained on The Cancer Genome Atlas, they ...
BACKGROUND: Gliomas exhibit a high recurrence rate, particularly in the peritumoural brain zone after surgery. This study aims to develop and validate a radiomics-based model using preoperative fluid-attenuated inversion recovery (FLAIR) and T1-weigh...
This study investigated the effects of feature augmentation, which uses generated images with specific imaging features, on the performance of isocitrate dehydrogenase (IDH) mutation prediction models in gliomas. A total of 598 patients were included...
The mortality rates have been increasing for glioma in adolescents and young adults (AYAs, aged 15-39 years). However, current biomarkers for clinical assessment in AYAs glioma are limited, prompting the urgent need for identifying ideal prognostic s...
Differentiating pseudoprogression (PsP) from true progression (TP) in high-grade glioma (HGG) patients is still challenging and critical for effective treatment management. This meta-analysis evaluates the diagnostic accuracy of artificial intelligen...
Brain tumors are a significant challenge to human health as they impair the proper functioning of the brain and the general quality of life, thus requiring clinical intervention through early and accurate diagnosis. Although current state-of-the-art ...
Cancer imaging : the official publication of the International Cancer Imaging Society
Aug 4, 2025
PURPOSE: Accurate preoperative grading of gliomas is critical for therapeutic planning and prognostic evaluation. We developed a noninvasive machine learning model leveraging whole-brain resting-state functional magnetic resonance imaging (rs-fMRI) b...
BACKGROUND: As an important branch of machine learning pipelines in medical imaging, radiomics faces two major challenges namely reproducibility and accessibility. In this work, we introduce open-radiomics, a set of radiomics datasets along with a co...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.