AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Glioma

Showing 1 to 10 of 340 articles

Clear Filters

Brain tumor classification using MRI images and deep learning techniques.

PloS one
Brain tumors pose a significant medical challenge, necessitating early detection and precise classification for effective treatment. This study aims to address this challenge by introducing an automated brain tumor classification system that utilizes...

Systematic review and epistemic meta-analysis to advance binomial AI-radiomics integration for predicting high-grade glioma progression and enhancing patient management.

Scientific reports
High-grade gliomas, particularly glioblastoma (MeSH:Glioblastoma), are among the most aggressive and lethal central nervous system tumors, necessitating advanced diagnostic and prognostic strategies. This systematic review and epistemic meta-analysis...

Semisupervised adaptive learning models for IDH1 mutation status prediction.

PloS one
The mutation status of isocitrate dehydrogenase1 (IDH1) in glioma is critical information for the diagnosis, treatment, and prognosis. Accurately determining such information from MRI data has emerged as a significant research challenge in recent yea...

Multimodal contrastive learning for enhanced explainability in pediatric brain tumor molecular diagnosis.

Scientific reports
Despite the promising performance of convolutional neural networks (CNNs) in brain tumor diagnosis from magnetic resonance imaging (MRI), their integration into the clinical workflow has been limited. That is mainly due to the fact that the features ...

Brain tumor detection empowered with ensemble deep learning approaches from MRI scan images.

Scientific reports
Brain tumor detection is essential for early diagnosis and successful treatment, both of which can significantly enhance patient outcomes. To evaluate brain MRI scans and categorize them into four types-pituitary, meningioma, glioma, and normal-this ...

From pixels to prognosis: leveraging radiomics and machine learning to predict IDH1 genotype in gliomas.

Neurosurgical review
Gliomas are the most common primary tumors of the central nervous system, and advances in genetics and molecular medicine have significantly transformed their classification and treatment. This study aims to predict the IDH1 genotype in gliomas using...

Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction.

Scientific reports
Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data ...

Machine learning fusion for glioma tumor detection.

Scientific reports
The early detection of brain tumors is very important for treating them and improving the quality of life for patients. Through advanced imaging techniques, doctors can now make more informed decisions. This paper introduces a framework for a tumor d...

Machine learning for grading prediction and survival analysis in high grade glioma.

Scientific reports
We developed and validated a magnetic resonance imaging (MRI)-based radiomics model for the classification of high-grade glioma (HGG) and determined the optimal machine learning (ML) approach. This retrospective analysis included 184 patients (59 gra...