Hybrid optimized feature selection and deep learning based COVID-19 disease prediction.
Journal:
Computer methods in biomechanics and biomedical engineering
PMID:
37018029
Abstract
The COVID-19 virus has affected many people around the globe with several issues. Moreover, it causes a worldwide pandemic, and it makes more than one million deaths. Countries around the globe had to announce a complete lockdown when the corona virus causes the community to spread. In real-time, Polymerase Chain Reaction (RT-PCR) test is conducted to detect COVID-19, which is not effective and sensitive. Hence, this research presents the proposed Caviar-MFFO-assisted Deep LSTM scheme for COVID-19 detection. In this research, the COVID-19 cases data is utilized to process the COVID-19 detection. This method extracts the various technical indicators that improve the efficiency of COVID-19 detection. Moreover, the significant features fit for COVID-19 detection are selected using proposed mayfly with fruit fly optimization (MFFO). In addition, COVID-19 is detected by Deep Long Short Term Memory (Deep LSTM), and the Conditional Autoregressive Value at Risk MFFO (Caviar-MFFO) is modeled to train the weight of Deep LSTM. The experimental analysis reveals that the proposed Caviar-MFFO assisted Deep LSTM method provided efficient performance based on the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), and achieved the recovered cases with the minimal values of 1.438 and 1.199, whereas the developed model achieved the death cases with the values of 4.582 and 2.140 for MSE and RMSE. In addition, 6.127 and 2.475 are achieved by the developed model based on infected cases.