Detecting representative characteristics of different genders using intraoral photographs: a deep learning model with interpretation of gradient-weighted class activation mapping.
Journal:
BMC oral health
PMID:
37231478
Abstract
BACKGROUND: Sexual dimorphism is obvious not only in the overall architecture of human body, but also in intraoral details. Many studies have found a correlation between gender and morphometric features of teeth, such as mesio-distal diameter, buccal-lingual diameter and height. However, it's still difficult to detect gender through the observation of intraoral photographs, with accuracy around 50%. The purpose of this study was to explore the possibility of automatically telling gender from intraoral photographs by deep neural network, and to provide a novel angle for individual oral treatment.