Diagnostic performance of deep learning-based reconstruction algorithm in 3D MR neurography.

Journal: Skeletal radiology
PMID:

Abstract

OBJECTIVE: The study aims to evaluate the diagnostic performance of deep learning-based reconstruction method (DLRecon) in 3D MR neurography for assessment of the brachial and lumbosacral plexus.

Authors

  • Falko Ensle
    Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland. falko.ensle@usz.ch.
  • Malwina Kaniewska
    Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Raemistrasse 100, CH-8091, Zurich, Switzerland. malwina.kaniewska@usz.ch.
  • Anja Tiessen
    Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), University of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
  • Maelene Lohezic
    Applications & Workflow, GE Healthcare, Manchester, UK.
  • Jonas M Getzmann
    Institute of Diagnostic and Interventional Radiology, University Hospital Zurich (USZ), Raemistrasse 100, CH-8091, Zurich, Switzerland.
  • Roman Guggenberger
    Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, Ramistrasse 100, 8091, Zurich, Switzerland.