Prediction of Kv11.1 potassium channel PAS-domain variants trafficking via machine learning.

Journal: Journal of molecular and cellular cardiology
PMID:

Abstract

Congenital long QT syndrome (LQTS) is characterized by a prolonged QT-interval on an electrocardiogram (ECG). An abnormal prolongation in the QT-interval increases the risk for fatal arrhythmias. Genetic variants in several different cardiac ion channel genes, including KCNH2, are known to cause LQTS. Here, we evaluated whether structure-based molecular dynamics (MD) simulations and machine learning (ML) could improve the identification of missense variants in LQTS-linked genes. To do this, we investigated KCNH2 missense variants in the Kv11.1 channel protein shown to have wild type (WT) like or class II (trafficking-deficient) phenotypes in vitro. We focused on KCNH2 missense variants that disrupt normal Kv11.1 channel protein trafficking, as it is the most common phenotype for LQTS-associated variants. Specifically, we used computational techniques to correlate structural and dynamic changes in the Kv11.1 channel protein PAS domain (PASD) with Kv11.1 channel protein trafficking phenotypes. These simulations unveiled several molecular features, including the numbers of hydrating waters and hydrogen bonding pairs, as well as folding free energy scores, that are predictive of trafficking. We then used statistical and machine learning (ML) (Decision tree (DT), Random forest (RF), and Support vector machine (SVM)) techniques to classify variants using these simulation-derived features. Together with bioinformatics data, such as sequence conservation and folding energies, we were able to predict with reasonable accuracy (≈75%) which KCNH2 variants do not traffic normally. We conclude that structure-based simulations of KCNH2 variants localized to the Kv11.1 channel PASD led to an improvement in classification accuracy. Therefore, this approach should be considered to complement the classification of variant of unknown significance (VUS) in the Kv11.1 channel PASD.

Authors

  • Kalyan Immadisetty
    Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
  • Xuan Fang
    Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
  • Geraldine San Ramon
    Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
  • Cassandra M Hartle
    Geisinger Medical Center, Danville, PA, USA.
  • Thomas P McCoy
    University of North Carolina, Greensboro, USA.
  • Regeneron Genetics Center
    Geisinger Medical Center, Danville, PA, USA.
  • Tooraj Mirshahi
    Geisinger Medical Center, Danville, PA, USA.
  • Brian P Delisle
    Department of Physiology and Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA.
  • Peter M Kekenes-Huskey
    Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA. Electronic address: pkekeneshuskey@luc.edu.