Augmenting Polymer Datasets by Iterative Rearrangement.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

One of the biggest obstacles to successful polymer property prediction is an effective representation that accurately captures the sequence of repeat units in a polymer. Motivated by the success of data augmentation in computer vision and natural language processing, we explore augmenting polymer data by iteratively rearranging the molecular representation while preserving the correct connectivity, revealing additional substructural information that is not present in a single representation. We evaluate the effects of this technique on the performance of machine learning models trained on three polymer datasets and compare them to common molecular representations. Data augmentation does not yield significant improvements in machine learning property prediction performance compared to equivalent (non-augmented) representations. In datasets where the target property is primarily influenced by the polymer sequence rather than experimental parameters, this data augmentation technique provides molecular embedding with more information to improve property prediction accuracy.

Authors

  • Stanley Lo
    Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
  • Martin Seifrid
    Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.
  • Théophile Gaudin
    Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada.
  • Alán Aspuru-Guzik
    Departments of Chemistry, Computer Science, University of Toronto St. George Campus Toronto ON Canada.