PickYOLO: Fast deep learning particle detector for annotation of cryo electron tomograms.

Journal: Journal of structural biology
PMID:

Abstract

Particle localization (picking) in digital tomograms is a laborious and time-intensive step in cryogenic electron tomography (cryoET) analysis often requiring considerable user involvement, thus becoming a bottleneck for automated cryoET subtomogram averaging (STA) pipelines. In this paper, we introduce a deep learning framework called PickYOLO to tackle this problem. PickYOLO is a super-fast, universal particle detector based on the deep-learning real-time object recognition system YOLO (You Only Look Once), and tested on single particles, filamentous structures, and membrane-embedded particles. After training with the centre coordinates of a few hundred representative particles, the network automatically detects additional particles with high yield and reliability at a rate of 0.24-3.75 s per tomogram. PickYOLO can automatically detect number of particles comparable to those manually selected by experienced microscopists. This makes PickYOLO a valuable tool to substantially reduce the time and manual effort needed to analyse cryoET data for STA, greatly aiding in high-resolution cryoET structure determination.

Authors

  • Erik Genthe
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Sean Miletic
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany; CSSB Centre for Structural Systems Biology, Notkestr. 85, 22607 Hamburg, Germany; University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.
  • Indira Tekkali
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany; Helmholtz Imaging, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Rory Hennell James
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany; CSSB Centre for Structural Systems Biology, Notkestr. 85, 22607 Hamburg, Germany; University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany.
  • Thomas C Marlovits
    University Medical Center Hamburg-Eppendorf (UKE), Institute of Structural and Systems Biology, Hamburg, Germany; CSSB Centre for Structural Systems Biology, Hamburg, Germany; Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany.
  • Philipp Heuser
    Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany; Helmholtz Imaging, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany. Electronic address: philipp.heuser@desy.de.