Rapid Prediction of a Liquid Structure from a Single Molecular Configuration Using Deep Learning.

Journal: Journal of chemical information and modeling
Published Date:

Abstract

Molecular dynamics simulation is an indispensable tool for understanding the collective behavior of atoms and molecules and the phases they form. Statistical mechanics provides accurate routes for predicting macroscopic properties as time-averages over visited molecular configurations - microstates. However, to obtain convergence, we need a sufficiently long record of visited microstates, which translates to the high-computational cost of the molecular simulations. In this work, we show how to use a point cloud-based deep learning strategy to rapidly predict the structural properties of liquids from a single molecular configuration. We tested our approach using three homogeneous liquids with progressively more complex entities and interactions: Ar, NO, and HO under varying pressure and temperature conditions within the liquid state domain. Our deep neural network architecture allows rapid insight into the liquid structure, here probed by the radial distribution function, and can be used with molecular/atomistic configurations generated by either simulation, first-principle, or experimental methods.

Authors

  • Chunhui Li
    State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China. Electronic address: chunhuili@bnu.edu.cn.
  • Benjamin Gilbert
    Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
  • Steven Farrell
    NERSC, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.
  • Piotr Zarzycki
    Energy Geosciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States.