MosaicNet: A deep-learning-based multi-tile biomedical image stitching method.

Journal: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Published Date:

Abstract

Multi-tile image stitching aims to merge multiple natural or biomedical images into a single mosaic. This is an essential step in whole-slide imaging and large-scale pathological imaging systems. To tackle this task, a multi-step framework is usually used by first estimating the optimal transformation for each image and then fusing them into a whole image. However, the traditional approaches are usually time-consuming and require manual adjustments. Advances in deep learning techniques provide an end-to-end solution to register and fuse information of multiple tile images. In this paper, we present a deep learning model for multi-tile biomedical image stitching, namely MosaicNet, consisting of an aligning network and a fusion network. We trained the MosaicNet network on a large simulation dataset based on the VOC2012 dataset and evaluated the model on multiple types of datasets, including simulated natural images, mouse brain T2-weighted Magnetic Resonance Imaging (T2w-MRI) data, and mouse brain polarization sensitive-optical coherence tomography (PS-OCT) data. Our method outperformed traditional approaches on both natural images and brain imaging data. The proposed method is robust to different settings of hyper-parameters and shows high computational efficiency, up to approximately 32 times faster than the conventional methods.

Authors

  • Botao Zhao
  • Ming Song
    National Laboratory of Pattern Recognition and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Shengfeng Liu
    National Laboratory of Pattern Recognition and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
  • Lan Sun
    Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
  • Wentao Jiang
    Key laboratory of Transplantation, Chinese Academy of Medical Sciences, Tianjin, 300192, China; Tianjin Key Laboratory for Organ Transplantation, Tianjin First Center Hospital, Tianjin, 300192, China; Department of Liver Transplantation, Tianjin First Central Hospital, Tianjin, 300192, China; Tianjin Key Laboratory of Molecular and Treatment of Liver Cancer, Tianjin First Center Hospital, Tianjin, 300192, China. Electronic address: jwt001@163.com.
  • Haotian Qian
  • Xiao-Yong Zhang
  • Yu Zhang
    College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China.
  • Tianzi Jiang
    Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 100190 Beijing, China; University of Chinese Academy of Sciences, 100049 Beijing, China.