Tackling higher-order relations and heterogeneity: Dynamic heterogeneous hypergraph network for spatiotemporal activity prediction.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Spatiotemporal activity prediction aims to predict user activities at a particular time and location, which is applicable in city planning, activity recommendations, and other domains. The fundamental endeavor in spatiotemporal activity prediction is to model the intricate interaction patterns among users, locations, time, and activities, which is characterized by higher-order relations and heterogeneity. Recently, graph-based methods have gained popularity due to the advancements in graph neural networks. However, these methods encounter two significant challenges. Firstly, higher-order relations and heterogeneity are not adequately modeled. Secondly, the majority of established methods are designed around the static graph structures that rely solely on co-occurrence relations, which can be imprecise. To overcome these challenges, we propose DyHN, a dynamic heterogeneous hypergraph network for spatiotemporal activity prediction. Specifically, to enhance the capacity for modeling higher-order relations, hypergraphs are employed in lieu of graphs. Then we propose a set representation learning-inspired heterogeneous hyperedge learning module, which models higher-order relations and heterogeneity in spatiotemporal activity prediction using a non-decomposable manner. To improve the encoding of heterogeneous spatiotemporal activity hyperedges, a knowledge representation-regularized loss is introduced. Moreover, we present a hypergraph structure learning module to update the hypergraph structures dynamically. Our proposed DyHN model has been extensively tested on four real-world datasets, proving to outperform previous state-of-the-art methods by 5.98% to 27.13%. The effectiveness of all framework components is demonstrated through ablation experiments.

Authors

  • Changyuan Tian
    Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.
  • Zequn Zhang
    Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.
  • Fanglong Yao
    Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China. Electronic address: yaofanglong17@mails.ucas.ac.cn.
  • Zhi Guo
    Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
  • Shiyao Yan
    Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.
  • Xian Sun
    Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; Key Laboratory of Network Information System Technology (NIST), Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100190, China; School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100190, China.