Deep learning model to predict exercise stress test results: Optimizing the diagnostic test selection strategy and reduce wastage in suspected coronary artery disease patients.
Journal:
Computer methods and programs in biomedicine
PMID:
37454499
Abstract
BACKGROUND: Cardiac exercise stress testing (EST) offers a non-invasive way in the management of patients with suspected coronary artery disease (CAD). However, up to 30% EST results are either inconclusive or non-diagnostic, which results in significant resource wastage. Our aim was to build machine learning (ML) based models, using patients demographic (age, sex) and pre-test clinical information (reason for performing test, medications, blood pressure, heart rate, and resting electrocardiogram), capable of predicting EST results beforehand including those with inconclusive or non-diagnostic results.