A Study on Data-Driven Novel Cancer Staging Methods.

Journal: Studies in health technology and informatics
Published Date:

Abstract

This paper presents a data-driven method to study the relationship of survival and clinical information of patients. The machine learning models were established to study the survival situation at the time of interest based on survival analysis. The way to determine the time of interest is an innovation of this paper. The distribution of survival time is considered, namely the three quartiles, as well as the traditional analysis experience is taken into consideration.

Authors

  • Yuan Gao
    Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou Zhejiang Province, China.
  • Yu Tian
    Key Laboratory of Development and Maternal and Child Diseases of Sichuan Province, Department of Pediatrics, Sichuan University, Chengdu, China.
  • Shengqiang Chi
    Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou Zhejiang Province, China.
  • Yao Lu
    Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo First Hospital, Ningbo, China.
  • Xinhang Li
    Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou Zhejiang Province, China.
  • Tianshu Zhou
    Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou Zhejiang Province, China.
  • Jing-Song Li
    Engineering Research Center of EMR and Intelligent Expert System, Ministry of Education, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou Zhejiang Province, China.