Deep learning-based coronary computed tomography analysis to predict functionally significant coronary artery stenosis.

Journal: Heart and vessels
PMID:

Abstract

Fractional flow reserve derived from coronary CT (FFR-CT) is a noninvasive physiological technique that has shown a good correlation with invasive FFR. However, the use of FFR-CT is restricted by strict application standards, and the diagnostic accuracy of FFR-CT analysis may potentially be decreased by severely calcified coronary arteries because of blooming and beam hardening artifacts. The aim of this study was to evaluate the utility of deep learning (DL)-based coronary computed tomography (CT) data analysis in predicting invasive fractional flow reserve (FFR), especially in cases with severely calcified coronary arteries. We analyzed 184 consecutive cases (241 coronary arteries) which underwent coronary CT and invasive coronary angiography, including invasive FFR, within a three-month period. Mean coronary artery calcium scores were 963 ± 1226. We evaluated and compared the vessel-based diagnostic accuracy of our proposed DL model and a visual assessment to evaluate functionally significant coronary artery stenosis (invasive FFR < 0.80). A deep neural network was trained with consecutive short axial images of coronary arteries on coronary CT. Ninety-one coronary arteries of 89 cases (48%) had FFR-positive functionally significant stenosis. On receiver operating characteristics (ROC) analysis to predict FFR-positive stenosis using the trained DL model, average area under the curve (AUC) of the ROC curve was 0.756, which was superior to the AUC of visual assessment of significant (≥ 70%) coronary artery stenosis on CT (0.574, P = 0.011). The sensitivity, specificity, positive and negative predictive value (PPV and NPV), and accuracy of the DL model and visual assessment for detecting FFR-positive stenosis were 82 and 36%, 68 and 78%, 59 and 48%, 87 and 69%, and 73 and 63%, respectively. Sensitivity and NPV for the prediction of FFR-positive stenosis were significantly higher with our DL model than visual assessment (P = 0.0004, and P = 0.024). DL-based coronary CT data analysis has a higher diagnostic accuracy for functionally significant coronary artery stenosis than visual assessment.

Authors

  • Manami Takahashi
    Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
  • Reika Kosuda
    Graduate School of Science and Engineering, Chiba University, Chiba, Japan.
  • Hiroyuki Takaoka
    Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Japan. tapy21century@yahoo.co.jp.
  • Hajime Yokota
    Department of Radiology, Graduate School of Medicine, Chiba University, Chiba, Japan.
  • Yasukuni Mori
    Department of Applied and Cognitive Informatics, Graduate School of Engineering, Chiba University, Chiba, Japan.
  • Joji Ota
    Department of Radiology, Chiba University Hospital, Chiba, Japan.
  • Takuro Horikoshi
    Department of Radiology, Chiba University Hospital, Chiba, Japan.
  • Yasuhiko Tachibana
    National Institute of Radiological Sciences, Chiba, Chiba, Japan.
  • Hideki Kitahara
    Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan.
  • Masafumi Sugawara
    Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
  • Tomonori Kanaeda
    Department of Cardiology, Eastern Chiba Medical Center, Togane, Japan.
  • Hiroki Suyari
    Department of Applied and Cognitive Informatics, Graduate School of Engineering, Chiba University, Chiba, Japan.
  • Takashi Uno
    Division of Clinical Infection Diseases & Chemotherapy, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
  • Yoshio Kobayashi
    Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Chiba, Japan.