Mean-Field Approximations With Adaptive Coupling for Networks With Spike-Timing-Dependent Plasticity.

Journal: Neural computation
PMID:

Abstract

Understanding the effect of spike-timing-dependent plasticity (STDP) is key to elucidating how neural networks change over long timescales and to design interventions aimed at modulating such networks in neurological disorders. However, progress is restricted by the significant computational cost associated with simulating neural network models with STDP and by the lack of low-dimensional description that could provide analytical insights. Phase-difference-dependent plasticity (PDDP) rules approximate STDP in phase oscillator networks, which prescribe synaptic changes based on phase differences of neuron pairs rather than differences in spike timing. Here we construct mean-field approximations for phase oscillator networks with STDP to describe part of the phase space for this very high-dimensional system. We first show that single-harmonic PDDP rules can approximate a simple form of symmetric STDP, while multiharmonic rules are required to accurately approximate causal STDP. We then derive exact expressions for the evolution of the average PDDP coupling weight in terms of network synchrony. For adaptive networks of Kuramoto oscillators that form clusters, we formulate a family of low-dimensional descriptions based on the mean-field dynamics of each cluster and average coupling weights between and within clusters. Finally, we show that such a two-cluster mean-field model can be fitted to synthetic data to provide a low-dimensional approximation of a full adaptive network with symmetric STDP. Our framework represents a step toward a low-dimensional description of adaptive networks with STDP, and could for example inform the development of new therapies aimed at maximizing the long-lasting effects of brain stimulation.

Authors

  • Benoit Duchet
    Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford X3 9DU, U.K.
  • Christian Bick
    Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands.
  • Áine Byrne
    School of Mathematics and Statistics, University College Dublin, Dublin D04 V1W8, Ireland aine.byrne@ucd.ie.