Breast Tumor Segmentation in DCE-MRI With Tumor Sensitive Synthesis.

Journal: IEEE transactions on neural networks and learning systems
Published Date:

Abstract

Segmenting breast tumors from dynamic contrast-enhanced magnetic resonance (DCE-MR) images is a critical step for early detection and diagnosis of breast cancer. However, variable shapes and sizes of breast tumors, as well as inhomogeneous background, make it challenging to accurately segment tumors in DCE-MR images. Therefore, in this article, we propose a novel tumor-sensitive synthesis module and demonstrate its usage after being integrated with tumor segmentation. To suppress false-positive segmentation with similar contrast enhancement characteristics to true breast tumors, our tumor-sensitive synthesis module can feedback differential loss of the true and false breast tumors. Thus, by following the tumor-sensitive synthesis module after the segmentation predictions, the false breast tumors with similar contrast enhancement characteristics to the true ones will be effectively reduced in the learned segmentation model. Moreover, the synthesis module also helps improve the boundary accuracy while inaccurate predictions near the boundary will lead to higher loss. For the evaluation, we build a very large-scale breast DCE-MR image dataset with 422 subjects from different patients, and conduct comprehensive experiments and comparisons with other algorithms to justify the effectiveness, adaptability, and robustness of our proposed method.

Authors

  • Shuai Wang
    Department of Intensive Care Unit, China-Japan Union Hospital of Jilin University, Changchun, China.
  • Kun Sun
  • Li Wang
    College of Marine Electrical Engineering, Dalian Maritime University, Dalian, China.
  • Liangqiong Qu
  • Fuhua Yan
    Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai 200025, China. Electronic address: yfh11655@rjh.com.cn.
  • Qian Wang
    Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China.
  • Dinggang Shen
    School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.