A multi-stage transfer learning strategy for diagnosing a class of rare laryngeal movement disorders.
Journal:
Computers in biology and medicine
PMID:
37801923
Abstract
BACKGROUND: It remains hard to directly apply deep learning-based methods to assist diagnosing essential tremor of voice (ETV) and abductor and adductor spasmodic dysphonia (ABSD and ADSD). One of the main challenges is that, as a class of rare laryngeal movement disorders (LMDs), there are limited available databases to be investigated. Another worthy explored research question is which above sub-disorder benefits most from diagnosis based on sustained phonations. The question is from the fact that sustained phonations can help detect pathological voice from healthy voice.