Joint learning of feature and topology for multi-view graph convolutional network.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

Graph convolutional network has been extensively employed in semi-supervised classification tasks. Although some studies have attempted to leverage graph convolutional networks to explore multi-view data, they mostly consider the fusion of feature and topology individually, leading to the underutilization of the consistency and complementarity of multi-view data. In this paper, we propose an end-to-end joint fusion framework that aims to simultaneously conduct a consistent feature integration and an adaptive topology adjustment. Specifically, to capture the feature consistency, we construct a deep matrix decomposition module, which maps data from different views onto a feature space obtaining a consistent feature representation. Moreover, we design a more flexible graph convolution that allows to adaptively learn a more robust topology. A dynamic topology can greatly reduce the influence of unreliable information, which acquires a more adaptive representation. As a result, our method jointly designs an effective feature fusion module and a topology adjustment module, and lets these two modules mutually enhance each other. It takes full advantage of the consistency and complementarity to better capture the more intrinsic information. The experimental results indicate that our method surpasses state-of-the-art semi-supervised classification methods.

Authors

  • Yuhong Chen
    Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China.
  • Zhihao Wu
    VoxelCloud, Inc., United States.
  • Zhaoliang Chen
    College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China; Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing, Fuzhou University, Fuzhou 350116, China. Electronic address: chenzl23@outlook.com.
  • Mianxiong Dong
  • Shiping Wang
    College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China; Guangdong Provincial Key Laboratory of Big Data Computing, The Chinese University of Hong Kong, Shenzhen 518172, China. Electronic address: shipingwangphd@163.com.