Bifurcations of a delayed fractional-order BAM neural network via new parameter perturbations.

Journal: Neural networks : the official journal of the International Neural Network Society
Published Date:

Abstract

This paper makes a new breakthrough in deliberating the bifurcations of fractional-order bidirectional associative memory neural network (FOBAMNN). In the beginning, the corresponding bifurcation results are established according to self-regulating parameter, which is different from bifurcation outcomes available by using time delay as the bifurcation parameter, and greatly enriches the bifurcation results of continuous neural networks(NNs). The deived results manifest that a larger self-regulating parameter is more conducive to the stability of the system, which is consistent with the actual meaning of the self-regulating parameter representing the decay rate of activity. In addition to the innovation in the research object, this paper also has innovation in the procedure of calculating the bifurcation critical point. In the face of the quartic equation about the bifurcation parameters, this paper utilizes the methodology of implicit array to calculate the bifurcation critical point succinctly and effectively, which eschews the disadvantages of the conventional Ferrari approach, such as cumbersome formula and huge computational efforts. Our developed technique can be employed as a general method to solve the bifurcation point including the problem of dealing with the bifurcation critical point of delay. Ultimately, numerical experiments test the key theoretical fruits of this paper.

Authors

  • Chengdai Huang
    School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China. Electronic address: huangchengdai@163.com.
  • Huanan Wang
    School of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China. Electronic address: wanghnan111@163.com.
  • Heng Liu
    Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National-Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
  • Jinde Cao