Drug-target binding affinity prediction using message passing neural network and self supervised learning.
Journal:
BMC genomics
Published Date:
Sep 20, 2023
Abstract
BACKGROUND: Drug-target binding affinity (DTA) prediction is important for the rapid development of drug discovery. Compared to traditional methods, deep learning methods provide a new way for DTA prediction to achieve good performance without much knowledge of the biochemical background. However, there are still room for improvement in DTA prediction: (1) only focusing on the information of the atom leads to an incomplete representation of the molecular graph; (2) the self-supervised learning method could be introduced for protein representation.