Deep learning applied to the histopathological diagnosis of ameloblastomas and ameloblastic carcinomas.
Journal:
Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology
PMID:
37712132
Abstract
BACKGROUND: Odontogenic tumors (OT) are composed of heterogeneous lesions, which can be benign or malignant, with different behavior and histology. Within this classification, ameloblastoma and ameloblastic carcinoma (AC) represent a diagnostic challenge in daily histopathological practice due to their similar characteristics and the limitations that incisional biopsies represent. From these premises, we wanted to test the usefulness of models based on artificial intelligence (AI) in the field of oral and maxillofacial pathology for differential diagnosis. The main advantages of integrating Machine Learning (ML) with microscopic and radiographic imaging is the ability to significantly reduce intra-and inter observer variability and improve diagnostic objectivity and reproducibility.