Identifying the optimal deep learning architecture and parameters for automatic beam aperture definition in 3D radiotherapy.
Journal:
Journal of applied clinical medical physics
Published Date:
Sep 5, 2023
Abstract
PURPOSE: Two-dimensional radiotherapy is often used to treat cervical cancer in low- and middle-income countries, but treatment planning can be challenging and time-consuming. Neural networks offer the potential to greatly decrease planning time through automation, but the impact of the wide range of hyperparameters to be set during training on model accuracy has not been exhaustively investigated. In the current study, we evaluated the effect of several convolutional neural network architectures and hyperparameters on 2D radiotherapy treatment field delineation.