MLP-Like Model With Convolution Complex Transformation for Auxiliary Diagnosis Through Medical Images.

Journal: IEEE journal of biomedical and health informatics
Published Date:

Abstract

Medical images such as facial and tongue images have been widely used for intelligence-assisted diagnosis, which can be regarded as the multi-label classification task for disease location (DL) and disease nature (DN) of biomedical images. Compared with complicated convolutional neural networks and Transformers for this task, recent MLP-like architectures are not only simple and less computationally expensive, but also have stronger generalization capabilities. However, MLP-like models require better input features from the image. Thus, this study proposes a novel convolution complex transformation MLP-like (CCT-MLP) model for the multi-label DL and DN recognition task for facial and tongue images. Notably, the convolutional Tokenizer and multiple convolutional layers are first used to extract the better shallow features from input biomedical images to make up for the loss of spatial information obtained by the simple MLP structure. Subsequently, the Channel-MLP architecture with complex transformations is used to extract deep-level contextual features. In this way, multi-channel features are extracted and mixed to perform the multi-label classification of the input biomedical images. Experimental results on our constructed multi-label facial and tongue image datasets demonstrate that our method outperforms existing methods in terms of both accuracy (Acc) and mean average precision (mAP).

Authors

  • Mengjian Zhang
  • Guihua Wen
    School of Computer Science and Engineering, South China University of Technology, Guangzhou 510000, China. Electronic address: crghwen@scut.edu.cn.
  • Jiahui Zhong
    Guangzhou University of Chinese Medicine, Guangzhou 510000, China.
  • Dongliang Chen
  • Changjun Wang
    Guangdong General Hospital, Guangzhou 510000, China. Electronic address: gzwchj@126.com.
  • Xuhui Huang
    Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China; Research Center for Brain-inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, 100190 Beijing, China. Electronic address: xuhui.huang@ia.ac.cn.
  • Shijun Zhang
    Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.