Clustering Methods for Vibro-Acoustic Sensing Features as a Potential Approach to Tissue Characterisation in Robot-Assisted Interventions.

Journal: Sensors (Basel, Switzerland)
PMID:

Abstract

This article provides a comprehensive analysis of the feature extraction methods applied to vibro-acoustic signals (VA signals) in the context of robot-assisted interventions. The primary objective is to extract valuable information from these signals to understand tissue behaviour better and build upon prior research. This study is divided into three key stages: feature extraction using the Cepstrum Transform (CT), Mel-Frequency Cepstral Coefficients (MFCCs), and Fast Chirplet Transform (FCT); dimensionality reduction employing techniques such as Principal Component Analysis (PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE), and Uniform Manifold Approximation and Projection (UMAP); and, finally, classification using a nearest neighbours classifier. The results demonstrate that using feature extraction techniques, especially the combination of CT and MFCC with dimensionality reduction algorithms, yields highly efficient outcomes. The classification metrics (Accuracy, Recall, and F1-score) approach 99%, and the clustering metric is 0.61. The performance of the CT-UMAP combination stands out in the evaluation metrics.

Authors

  • Robin Urrutia
    Instituto de Acústica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia 5111187, Chile.
  • Diego Espejo
    Audio Mining Laboratory (AuMiLab), Instituto de Acústica, Universidad Austral de Chile, Valdivia 5111187, Chile.
  • Natalia Evens
    Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5111187, Chile.
  • Montserrat Guerra
    Instituto de Anatomia, Histologia y Patologia, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5111187, Chile.
  • Thomas Sühn
    Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
  • Axel Boese
    INKA Intelligente Katheter, Otto-von-Guericke-Universität, Magdeburg, Germany.
  • Christian Hansen
    Department of Simulation and Graphics, University of Magdeburg Universitätsplatz 2, Magdeburg, 39106 Germany.
  • Patricio Fuentealba
    Instituto de Electricidad y Electrónica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia 5111187, Chile.
  • Alfredo Illanes
    Department of Medical Engineering, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany.
  • Victor Poblete
    Instituto de Acústica, Facultad de Ciencias de la Ingeniería, Universidad Austral de Chile, Valdivia 5111187, Chile.